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ABSTRACT

",

[ . . . . . .
!‘Q This survey of image restoration techniques presents a concise overview of
S the most useful restoration methods. Linear spatially invariant and linear spa-

tially variant image restoration techniques are described and the strengths and
u weaknesses of each approach are identified. Examples of restored images for
~. the various techniques are given. To provide guidelines for choosing a restora-
. tion technique for a particular application, a comparison of the techniques is
made. The restoration methods are compared and evaluated based on the fol-

::r lowing criteria: restored image visual quality, performance in the presence of
2 additive image-independent noise, degree of a priori knowledge required, and
computational complexity.
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EXECUTIVE SUMMARY

This technical report gives a broad overview of the field
of image restoration and focuses on the most commonly
used and successful restoration techniques. Comparisons
of these techniques are made so that the reader who is
facad with a specific application can quickly perform the
necessary trade-offs to choose an appropriate restoration
method.

Image restoration is defined as the processing per-
formed on a degraded image to remove or reduce the de-
erading effects. Restoration differs from image enhance-
ment in that it requires prior knowledge of the degrada-
tion phenamena. The degradations in an imaging system
arise from the filtering effects of the optical elements,
electrical components, and surrounding environment.

To lay the foundation for the analytic methods dis-
cussed, basic models of imaging systems are introduced
in Secticn 2.0 and the effects of tiwese systems on the
original object are identified. Linear spatially variant and
invariant as well as spatially separable systems arc dc-
fined. Since restoration techniques require knowledge of
the degrading phenoniena, methods for determining these
degradations a posteriori from an output blurred image

) NN

A PO PO\ ‘-’.\'{f e, N ._r-_; ..;..-' - }.'-_._- .
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are given in Section 3.0. Methods of direct measurement
of the system point spread function from the images of
point, line, and edge sources are outlined. Estimation
techniques that use homomorphic signal processing con-
cepts are also presented.

The main body of the report, Section 4.0, examines
the derivation of linear spatially invariant and variant
restoration techniques. The restoration criterion motivat-
ing each technique is supplied and the assumptions and
limitations of each method are identified. Techniques de-
rived include simple inverse filtering, constrained decon-
volution, homomorphic deconvolution, and maximum
a posteriori estimation. Superresolution methods are also
briefly discussed. ’

Section 5.0 compares the image restoration techniques
considered. The methods are compared against the fol-
lowing criteria: visual restoration quality, noise perfor-
mance, a priori knowledge, and computational complex-
ity. The information in this section offers guidelines for
choosing a restoration technique for a particular applica-
tion. Conclusions and potential areas for future investiga-
tion are discussed in Section 6.0.
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1.0 INTRODUCTION

This technical memorandum surveys the field of im-
age restoration and lays the theoretical groundwork need-
ed to understand the concepts and alternatives in this
branch of image processing. Although the scope of the
repert is general in nature, the reader with a specific ap-
plication should be able 1o quickly compare and contrast
the restoration techniques applicable to his or her
problem.

1.1 DEFINITION OF RESTORATION

Image restoration is defined as the processing per-
formecd on the image using a priori knowledge of the
degrading phenomena to reduce or remove the degrad-
ing effects. Restoration differs from image enhancement,
which uses primarily ad hoc techniques (frequently non-
linear) to bring oul or alter certain aspects of the image.
Enhancement techniques include histogram reshaping for
gray-level modification, ‘‘crispening’’ to sharpen edges,
and thresholding to segment the image. Image restora-
tion, on the other hand, seeks to undo, partially or whol-
Iy, the degradation an image has undergone for the pur-
pose of restoring it to its original ideal form.

To undo the degradation, we must have prior knowl-
edge of the degrading process. The a priori information
reqguired by a restoration technique may simply be a gener-
al analytic model for the degrading imaging system. An-
other method inay require detailed information about the
svstem filtering effects and the imaged object and noise
characteristics. The degree of prior knowledge available
for a specific application will thus influence the choice
of restoration technique. In Section 4.0 we consider resto-
ration techniques that vary widely in the degree of prior
knowledge required.

Major sources of image degradation and specific resto-
ration examples are identified in this introductory section.
The general analytic imaging system models used to derive
the restoration approaches are presented in Section 2.0.
Section 3.0 discusses the a posteriori determination of the
imaging degradations by direct measurement and estima-
tion methods. This information is subsequently used as
the prior knowledge requisite for the restoration tech-
nigues. Both linear spatially invariant and variant tech-
nigues are outlined in Section 4.0, along with a few non-
linear restoration methods. Section 5.0 offers a compari-
son ot the techniques (Table 3 is especially useful) and
criteria to consider when choosing a restoration method
for a particular application. Conclusions and additional
comments are given in Section 6.0.

PR

1.2 SOURCES OF IMAGE DEGRADATION

In a real imaging system, the image is degraded by the
net effect of numerous degradation phenomena. Individu-
al degradations (other than system noise) are typically
modeled as having a linear filtering effect on the original
object. In general, the individual degradation effects may
interact in a complicated fashion to produce the net effect
on the image. However, the overall system degradation
is usually modeled as the linearly cascaded effects of the
individual degradations present in the system to ensure
analytic tractability.

Image degradations arise from a variety of sources, such
as imaging system optics and electronics, and surrounding
environmental effects. Several major sources of image de-
gradation are:

1. Image motion. When the object or imaging system
experiences relative motion during the imaging time
of exposure, degradation results. Examples of degra-
dation-inducing motions are random and determinis-
tic camera vibrations, camera rotation, and linear
camera motion along a flight path.

2. Turbulent media. Differences in air temperature at
varying altitudes cause variations in the air’s index
of refraction and give rise to the random phenome-
non turbulence. Hufnagel and Stanley' have char-
acterized the effect of this type of degradation for
both long- and short-term exposures.

3. Diffraction-limited optics. The optical elements in
the imaging system have a filtering effect on the
resulting image.? Under very low noise condi-
tions, even the filtering effect caused by an ideal
imaging system may be reduced by restoration and
resolution beyond the diffraction limit ob-
tained. ™

4. Optical aberrations. Aberrations present in-the im-
aging system also degrade the output image. Resto-

'R. E. Hufnagel and N. R. Stanley, “Modulation Transfer
Function Associated with Image Transmission through Tur-
bulent Media,”" J. Opt. Soc. Am. 54, 52-61 (1964).

*J. W. Goodman, Introduction 10 Fourier Optics, McGraw-
Hill, San Francisco (1968).

'T. S. Huang, W. F. Schreiber, and O. I. Tretiak, ‘‘Image
Processing,”” Proc. IEEE 59, 1586-1609 (197)).

*B. R. Fricden, “Restoring with Maximum Likelihood and
Maximum Entropy,” J. Opt. Soc. Am. 62, 511-518 (1972).
B. R. Frieden and J. J. Burke, ‘‘Restoring with Maximum
Entropy II: Superresolution of Photographs of Diffraction-
Blurred Impulses,™ J. Opt. Soc. Am. 62, 1202-1210 (1972).
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( ration techniques have been developed that reduce and processed long after the image was formed. How-
- the effects of defocus, coma, curvature-of-field, ever, the development of rapid algorithms and advanced
::-',- astigmatism, and distortion aberrations.”* hardware implementations should make real-time image
_,:-' 3. Thermal effects. Temperature differentials across restoration feasible.

- the imaging svstem elements and overall operating One of the first applications of image restoration was
o

. temperature changes cai cause image degradation.
Spherical aberration and a shitt in focus have been

in the 1960< at the California Institute of Technology
Jet Propulsion Laboratory. Images returned from the

. - shown 1o arise from thermal effects caused by Mariner spacecraft contained geometric distortion creat- ‘
vy aerodynami¢ heating in infrared missile seeker sys- ed by the vidicon on-board camera.'® Digital restora-
g tems.” tion techniques were used to remove the distortion. The
';: These are only a tew of the more important degrad- algorithm worked by locating registration reseau marks
o<d ing cftects. Additional sources of degradation include and calculating a coordinate transformation that was
) chromatic aberration, detector nonuniformitics, camera subsequently applied to the image.
shutter effects, and scan jitter in video svstems, Singe then, restoration techniques have been applied
-',.:- in the diverse areas of medicine (X rays, acoustic im- }
e agery), surveillance data (satellite and aircraft imagery), !
o 1.3 APPLICATIONS OF RESTORATION oil exploration (seismic signals), and forensic science
:::. (smudged fingerprints). Restoration has even found ap-
'&_: Image restoration can be applicd to many interest- plication in the music world as Stockham demonstrated
® ing image problems in a wide variety of fields, Most by restoring Enrico Caruso recordings using homo-
o= applications today are restricted to data that have been morphic deconvolution. "
t:: stored on magnetic tape of some other storage medium
¥
'’
N
K<’
.»:;:
~'_\:
g .
e \
.
)
- - 2.0 IMAGING SYSTEM MODELS
e
K. .
f To evaluate and reduce the eftects of the image degra- has been specified, analsytic methods can be used to de-
Y dutions discussed i Secnion 1.0 a mathematical model rive restoration techniques. In this section, we first de-
A tor the ttmagime s, ~oee s needed. Onee @ svstem maodel fine the imaging syvstem in general terms and then impose g
S varous resticliois un e geiicial system descrintion that
:',:.: e S, Jead to analvtically tractable models.
.\', TGN Robbgns and T SO Huoane, nverse Brliering tan .
"_;./ Pancar StV et Iniaving Svstenis . Proc TEEFE 60, ,
. S62 NT2 YT 4
L AN Saschuk s USpace Vanant Imace Restoration i
:-_\ Coordmate Transtormattons. 1 Opro Soc b 64,135 14 e
- P97 4 . A O Handley and W, B, Green, “*Recent Developments !
o NN Saewchat nd MU Pavrovian, URestoration o in Digital Image Processing at the Image Processing Labo-
‘ Natrematism and Carcature of Bickds 0 Opes Soc o 68, ratory at the let Propulsion 1 aboratory ™ Proc. 1EEE 60,
T2 T T, N21R2K (197D, ,
_ T Harns, Evalianon of Eovironmental Optical Fricans I G Stockham, 7. M. Cannon, and R. B. Ingebretsen,
!r o Hheh Spead Homaephenaad Domes Eane o Rav Trace SRlind Decomvolution through Digital Signal Processing,™
" NodoT THE NPT T 1TEIS6D 066 \pr 19xA) Proc JEEL 63, 67K 692 (1975).
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2.1 CANONIC IMAGING SYSTEM MODEL

A canonic model of image formation and detection is
shown in Fig. 1.'? The detected image plus noise is

g(xnyl) = Sl [b(xl’yl)l + nl (xllyl)

+ S‘Z(b(xnyl)l n, (xi:yi) ’ (l)

where n, and n, represent signal-independent noise,
n, = S, {h}n, is signal-dependent noise, S, { -] is the
detector response function, S, { - } is the signal-depen-
dent noise function, and (x;,y;) denote coordinates in
the image plane. For this canonic model, the functions
S, and S; may be nonlinear.

The image radiant energy, b(x;,y,), is found by op-
erating on the object radiant energy by the system point
spread function (psf), A, which will be, in general, a
nonlinear function of spatial, temporal, and frequency
coordinates, as well as the object function, f, i.e.,

blx, v, t.\) =

)

v oo

*, 1]

h('Yl ’)‘!'{I’AH’V{I 9y(;vtarxo’ f(-xg:y();!op)\g ))

%

¥ O !

where (x,,y,) are the coordinates in the object plane.
Although imaging systems are nonlinear {e.g., typical
X-ray photographs), many are approximately linear
when within some operating constraints. To obtain a
more analytically tractable model, we make the sim-
plifying assumption of linearity and neglect the chro-
matic effects.

If we restrict the temporal effects to relative motion
between the imaging camera and the object during the
time of exposure, T, they can be incorporated into the
spatial coordinate dependency. For example, for ob-
ject motion described by the functions

X, ml (xa:yar’o) » (3)

Yi mZ (xoxyooto) »

inverse functions can be found such that
tO = kl (xa'yolxl) = k2 (xo,ya.)',) » (4)

and the image radiant energy is described only in terms
of the object and image spatial coordinates.

X dx, dv, dt, dn, , )
nalxj v
Sz {b} | x
Lixj, vl nytxg, yit
fixo. ¥o! h Image
2-D object radiant Detect oix ,
radiant energy Image formation energy etector v,
> U —(+ }—— Detected image
pf S‘ % b[ plus nuise
nylx;, y)

Figure 1 Canonic imaging system model.

“H. C. Andrews and B. R. Hunt, Digital Image Restoration,
Prentice-Hall, Englewood Ciiffs, N.J. (1977).
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2.2 1'WEAR SPATIALLY

h (X, Y0 X0,

fl

hl (xl’xo) h: (_V,-,yo) (LSV)

P~ V s "JANT/INVARIANT MODELS
o
”:: The simplifications discussed in Section 2.1 result in =m0 =X b (= 2) (LSD.
S the expression for a linear spatially variant (LSV) im- )
":} aging system,
B
I A N A separable LSI psf might arise, for example, from a
V::'_- h(x..v,) = \ \ (X, V,,X,,5,) unit-square-aperture ideal imaging system,
~ iy
"‘\-. ‘ sinw(x, — x,)
-_’:.\,* X fix,,v, ) dx, dv, , (5 h(x,y,x,,v,) = [———]
h™ T{X, — X,)
DA where /1 is a tunction of all four spatial variables and [51n1r(y, —Jo )] . (8)
e has been modiftied to incorporate any relative motion w{(y, — ¥,)
L. between object and camera. A common example of an
o .SV imaging system is one where the camera moves Separability offers the advantage of performing two-
-I'_:-‘ with constant linear velocity normal to the optical axis dimensional restoration by sequential one-dimensional ;
';’f when imaging a three-dimensional scene. Objects in the operations. This results in a tremendous simplification
ey toreground will be blurred more than objects in the dis- in the computer imp]emcn[a[ign of the restoration al-
-7 tance. resulting in spatially variant degradation. gorithm. '
::r Further simplification results if the system obeys the Other restrictions may be put on the imaging system t
-7 property of superposition. Then the system is linear spa- such as nonnegativity to ensure positive images or loss- N
e tially invariant (LSI) and less imaging constraints. To coincide with digitized com-
N . puter array representations, we also need to develop a
y i discrete system model. A concise discrete representation
v b,y = \ \ hx, —x,. v =) lexicographically orders the N by N two-dimensional
:--: i object, noise, and image data into one-dimensional vec-
x flx, v dy, dy, &) tors each of length N°. The system psf can then be

l.
ae

1 4
s

which i~ the tamiliar two-dimensional convolution in-
tegral. This representation is particularly attractive since
it lends itselt to Fourier analysis. Consequently, many

modeled as an N° by N° matrix of values [H] result-
ing in

b = [H]T. 9

; restoration techniques have been developed for LSIim- The matrix [H] can be shown to be block Toeplitz
aging systems, for LSI imaging systems.'* A matrix is Toeplitz if the
. entries on each diagonal have the same value (i.e., .
h, = hy for i —j =k — 1), a matrix is block
ot 2.3 SPATIALLY SEPARABLE MODELS Toeplitz it it has a Toeplitz partitioning and each par-
e tition submatrix is also Toeplitz. A summary of the !
i~ U nder certain circumstances, the imaging system pst resulting imaging models (noise-free case) for both con- :
“ may he spatially separable and tinuous and discrete systems is given in Table 1.
b
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Table 1

Summary of imaging system models.

Continuous system

Discrete system

Noise-free imaging  g(x,.0,) = [[(X, 10,5050 (X000 )dX,dVy 85 = Y, Y Ayt oOF
Pl

model

Lossless incoherent  g(x,,y,) = 0
maging f(’\.{, ,'V{)) >0

h (X, > VX, »yo ) = 0

sjh(xl’yllx()’yo) dXI dyl = 1

g = [H]f (lexicographically ordered)

v

&y
Ju =

h[j,kl
!

))

0
0
=0

Y hy =1
]

Linear spaually Nonseparable
variant R(x VX Ve) = (X Y0Xos Yo ) [H] = [H]
Separable
H(X,Y0X0 0, ) = Ry (X%, Ry (21,5,) [H] = [H|] ® [H,]
Linear spatially Nonseparable
invariant hx, 0%, 0, ) = (X, =X, —V,) [H] = block Toeplitz
Separable

Il

h (Xl ,y, 'X() v.vo )

hl (X: - X )hZ (.yl —yu)

E
|

= [H]1 ® [H,]
(#,], [H,] Toeplitz

3.0 A POSTERIORI DEGRADATION DETERMINATION

Restoration as defined in Section 1.0 requires a priori
knowledge of the degradation performed on the original
object. Most of the restoration techniques described in
Section 4.0 require knowledge of the imaging system
pst. In practical restoration applications, we are com-
monly faced with the task of a posterioni determination
of the degrading psf from the output blurred image.

Various approaches for accomplishing restoration are
possible. The techniques outlined below are restricted
to LSI imaging system applications. However, if the sys-
tem is LSV, these techniques can be extended by divid-
ing the image into isoplanatic patches to determine the
local psf in each region (see Section 4.3.1 for further
discussion). If the original image has a specific struc-
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ture, direct measurement of the psf can be performed.
Point, line, and edge sources imaged by the system can
be used to directly measure or calculate the system
psf.'* Alternately, psf estimation can be accomplished
by homomorphic signal processing techniques per-
formed on the blurred image. If a specific parametric
form for the degradation is assumed (e.g., linear con-
stant velocity blur, simple optical defocus), estimation
techniques that determine the model parameters can be
used to develop an expression for the system psf. "

3.1 DEGRADATION PSF MEASUREMENT
TECHNIQUES

There are three direct measurement techniques that
can frequently be used to determine the system psf.

3.1.1 Point Source Measurement
Locate an image of an isolated point source in the
degraded output and measure the psf directly by

: =

g{x,v) \ hix, ¥, =)

nv

X 6(x,,v,) dx, dv, = h(x,y,) . (10)
This method is particularly applicable in astronomical
imaging with stellar point sources.

3.1.2 Line Source Measurement

l.ocate an image of an isolated line source in the
blurred output and measure the line spread function (Isf)
directly by

Vo= V) 6(x,)

g(n,v) =

nl.

(-

ix, dy,
x

\ hix,y, v dv, = h(x,v,) .

(an isotropic function), H and therefore h are deter-
mined. Otherwise we must find the Isf for line sources
positioned at varying angles in the image to determine
H along several radial lines. Interpolation is used to ob-
tain the transfer function values at rectangular grid lo-
cations.

3.1.3 Edge Source Measurement

Locate an isolated edge in the degraded image and
measure the edge spread function (esf). The derivative
of the esf is the Isf and, therefore,

_ H/ (j;:_/‘; )
2xf,
From this result, we can determine the psf as before.

Par-target test patterns imaged by the system are fre-
quently used for this technique.

H, (/.[,) (edge along y axis) .

(13)

3.2 DEGRADATION PSF ESTIMATION
TECHNIQUES

The techniques described below are based on homo-
morphic signal processing (HSP) ard cepstral-like tech-
niques to estimate the degrading filter and its param-
eters.

3.2.1 HSP Filter Fstimation

The blurred image is subdivided into N regions. This
technique requires that the nonzero extent of the psf
be small compared to the area of each region. Each re-
gion is Fourier transformed to yield

Gl (f\’ \) = HU‘\’f\) Fl (f\’ i )' (14)

wherei = 1,2, ..., N. The logarithm of the magni-
tude is taken and the result is summed over the N regions
by

(1 1) N N
YiniG| = Nin|H + Y in |F,| . (15)
In the Fourier domain, ! a
The degrading filter is estimated as
FTigixv)) = G(..f,) = H/.0) . (12)
] \ N
where FT1 -} denotes a two-dimensional Fourier trans- H = C‘p{ﬂ/ [El niG,j - EII” I£ ':I}
form. [f the psf is known to he circularly svmmetric -
- \ fG [ 1N
A Rosenteld and AL C. Kak, Digital Pictiire Processing., = H - (16)
2nd ed., Academic Press, New York (1982). - lF,
14
o _.;-'\._. ' ooy ‘._ o0 \- .\ ,..-__ _\ ;;'.r.;.- '.‘_-r,a.\:z-‘ '¢.;.:-;.‘_.‘.;,;‘ ‘ ',"; ‘_-;.,;_.’_. '..;
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For this technique to work, the object Fourier trans-
form in each region must either be known or estimated.
Another possibility is to assume that for large enough N,

1 AY
- Eanl Constant. (17)
N =

The conditions that must be met to satisfy this last
criterion are not well defined and require further inves-
tigation.

3.2.2 Power Spectral Density Estimation

A related approach treats the object and image as
stochastic processes and uses the function power spec-
tral densities (psd) to determine the degrading filter. For
linear systems,

See = |HI* Sy, (18)

where S, and S, are the psd of the image and object
functions, respectively. The blurred image psd can be
estimated by the spatial average

12 ,
S.. = - YIG 1%, (19)
N~

where the assumption is made that the stochastic im-
age process is ergodic. The resulting filter is

A

I X
;VZ!G,I' 12
=1
\H| = {—9——} . (20)
U

The object psd, Sy, is either assumed known or is also
estimated as a spatial average, and the [F,[,
i =1 2,.., Nare assumed known.

Both of tie above estimation techmques lead to an
expression for the magnitude of the degrading filter;
they give no information about the filter phase. For
degrading filters that are known a priori to be real and
to contain no zero crossings (e.g., Gaussian blur), the
filter has been sufficiently determined. If the filter trans-
fer function does contain zero crossings, we may be able
to postulate a parametric form for the filter. Fstimation
techniques can then be used to determine the parame-
ters. Two examples of this parametric estimation meth-
od are given below.

5

by the linear constant velocity motion of the camera
during exposure. Equations 3 and 4 (or others of that
form) can be used to determine the LSI psf,

|

0 < xcos¢ + ysing < vT

v and y = xtan¢ @1

h(x,y) =
0 elsewhere.

The filter transfer function is

. —ix T
HUof) =T S“‘("i vf?; , @2)

where T'is the time of exposure, v is the linear velocity,
¢ is the angle of motion relative to the x axis, and
S =/, cos¢ + f, sin¢.

This filter clearly has zero crossings and a phase func-
tion associated with it. The HSP techniques discussed
in Section 3.2 will not work for this degradation and
some other method of estimating the filter is required.
In particular, we need to estimate the parameters v7T
and ¢. To accomplish this, we compute one-dimensional
Fourier transforms of the log magnitude of the blurred
image spectrum with respect to both the f, and f, fre-
quency axes. The periodic structure of the filter transfer
function gives rise to peaks in the two one-dimensional
Fourier transforms thus generated at the values
x = vT sin ¢ (Fourier transform with respect to f,)
and y = vT cos ¢ (Fourier transform with respect tc
/). This cepstral-like technique allows us to determinc
both unknown parameters, vT and ¢, which in turn uni-
quely specify the degrading filter.

3.2.3.2 Simple defocus aberration. The degrada-
tion arising from a badly defocussed optical system can
be modeled as the Airy disk pattern'?

S AN+

H wlty) =
Us i) AN+

, (23)

where J, is a Bessel function of the first kind and A4
is the effective radius of the circular aperture. The log
magnitude of the image spectrum after inversion and
clipping yields large positive values forming a circle of
radius A. With this technique, the radius can thus be
estimated and the filter determined. Obviously, care

r. 3.2.3 Parametric Filter Estimation

3.2.3.1 Linear constant velocity blur. We consider must be taken with both parametric estimation methods
an imaging svstem where the only degradation is caused to avoid logarithms of zero values.

r
;"::
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3.3 NOISE CONSIDERATIONS that the detector noise is independent from frame to

frame to effect a reduction in the noise variance.
So far, no mention of the effect of noise has been The imaging system psf can also be considered to be
made. In general, the model for the output image will varying from frame to frame while the object remains
consist of the linearly filtered object plus signal inde- unchanged. This is the case when detector camera mo-
pendent noise, tion or random turbulent media variations are incor-
porated in the psf. The summation over J image frames

g=h=x*xf+n yields

i

- and g =h *xf+n", (25)
NS
e G = HF + N . (24) where the new noise term, n’, retains the same mean
-~ as the original noise but has a variance that is reduced
The introduction of noisc into the svstem will clearly by the factor 1/J. The new system psf is h’ and is the
degrade the measured and estimated values for the sys- ensemble average of the individual frame psf. If the
tem filter just derived. noise n’ has a known mean value and the variance is
One way to reduce the effect of noise is multiframe sufficiently small, degradation measurement or estima-
averaging, Several frames of the degraded image may tion techniques can be applied to the averaged image
be available (as is often the case with video data), and in Eq. 25 to generate an estimate of h’. Restoration
noise reduction can occur by averaging these image can then be carried out on this averaged image to ob-
frames. Multiframe averaging relies on the assumption tain a restored version of the original object.

4.0 IMAGE RESTORATION TECHNIQUES

_:.~_\_. When surveving the image restoration literature, it perform some operation on the degraded image to ef-
S becomes apparent that a plethora of restoration tech- fect an “improvement’’; i.e., a restored image is gener-
_-}:"', niques exists. Each technique is based on particular as- ated that in some sense more closely resembles the origi-
e sumptions about the object and imaging system and is nal object. The choices of criteria used to motivate the
. motivated by some torm of restoration criteria. A com- improvement and determine the restoration technique
prehensive discussion of all restoration methods is be- fall into four general categories: (a) least squares esti-
e vond the scope of this report. Instead, we consider only mates, (b) equivalent power spectral densities, (c) Bayes-
:—';.' the most popuiar and successful methods for both 1.S1 ian estimates, and (d) ad hoc methods.
‘o and LSV imaging systems. The strengths and weaknesses Techniques based on least squares estimation treat
/ -:: ot cach method are identified and restoration examples the original object as a deterministic unknown function.
' ::_‘ are supplicd where possible: however, rather than pre- This criterion requires that the squared error between
senting a somewhat long and disjointed list of restora- the degraded image and the filter.d estimate be
tion techniques, we begin with the general concepts that minimized,

tic these varied methods together.

Minte} = Min {{g — h * fI°) . (26)
4.1 RESTORATION CRITERIA / '
Given a degraded image, we would like to use the Because of the invariant filtering operation, least squares

prior knowledge obtained about the imaging svstem to estimation onlv results in LSI restoration techniques.
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The second category is that of equivalent power spec-
tral densities. Techniques that fall into this category treat
the object as a stochastic process and generate a restored
image whose psd is equal to the known original object
psd,

Sy =Sy - @7

Bayesian estimation gives rise to a number of estima-
tion criteria depending on the cost function assigned to
errors. ™ The stochastic properties of the object and
noise are used to develop minimum mean squared error
(MMSE), maximum entropy, and maximum a posteriori
(MAP) estimates.

In addition to techniques based on these well-defined
criteria, others developed on heuristic arguments can
also provide good restoration. Application-specific con-
straints such as non-negativity or second order smooth-
ness can also be introduced to generate various hybrid

techniques. Table 2 lists the categories of restoration
criteria and the restoration techniques associated with
each one. These techniques are discussed in detail in
Sections 4.2 and 4.3.

4.2 LINEAR SPATIALLY INVARIANT
TECHNIQUES

Recall that the LSI imaging system model is

g(x,y) = SS h(X,- - X, Vi — yo)

X f(xo, ¥5) dx, dy,

+ n(x;,y;) , (28)

Table 2
Restoration criteria and techniques.

Category Criterion

Techniques
LSI LSV

1. Least squares estimate Mintlg — h * f17}

2. Equivalent power spectral

! Sy =S

density 2 7

3. Bayesian estimate _,
Minimum mean square Min E{|f — f1°}
error
Maximum entropy Max { —f In f}
Maximum a posteriori Max Prifig)

4. Ad hoc¢ methods

‘M. 1. Van Trecs, Detection, Estimation, and Modulation

Theorv, Part I, Wiley & Sons, New ¥ " (1968).

Inverse filtering

Homomorphic filtering
Geometric mean filtering
(a=1/2,y = 1)

Wiener filtering
Recursive filtering

Analytic continuation

Maximum entropy
filtering

Maximum a posteriori
filtering

Constrained
deconvolution

Geometric mean filtering
OD=a=x1l%)
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where the noise is modeled as additive and signal inde-
pendent. In the Fourier domain, this becomes

GU.f) = FULL) HUWL) + NUGS) - (29)

The subsections below discuss various methods of im-
age restoration applicable to LSI systems. They incor-
porate techniques that treat the degrading filter, H, as
deterministic and known, deterministic with unknown
parameters, and completely random.

4.2.1 Inverse Filtering

The technique of inverse filtering or method of least
squares assumes a known (or accurately estimated) de-
terministic filter transfer function, A. It generates a lin-
ecar restoration filter with psf m(x,y), which satisfies
the criterion of minimum squared error,

Minfe} = Min {lg — h * A7} . (30)
r f

where

f=m=x*g. 31
This is easily solved to yield*

Miie = FT{m} = 1/H (32)
and

Free = FTI/Y = G/H . (33

Equation 33 demonstrates that the inverse filter has
severe problems whenever H = 0. If H has zeros in the
desired image bandwidth, the image cannot be perfectly
restored, even in the absence of noise, because of the
indeterminate 0/0 ratios that occur. When noise is pres-
ent, the zeros of H serve to amplify the noise power
at these frequencies. If H is reasonably band limited,
high-frequency noise power can aiso be severely in-
creased.

A rough measure of the degradation in signal-to-noise
ratio (SNR) from pre- to postrestoration is found by
defining a voltage SNR for the degraded image,

syg, = HAx AL
- lmll L g

T A S ¥ A DO A
A Rid Bt . o a o Mo Ao gl 4N

where’ the energy conserving property of & has been
used'? and || || denotes the signal norm.'* The SNR
for the image restored by inverse filtering is defined as

171 S 1 1

SNR; = (35)

llm * nll — [Imi} [Inj] =

The ratio of the two SNRs is the degradation in SNR
caused by the inverse filtering restoration process,

_SNRp 1 1
SNR, ~ lmll  ||H7' T

(36)

where Parseval’s theorem accounts for the last equali-
ty. Typical values for ||H '|| for real imaging sys-
tems are on the order of 100 or higher, demonstrating
that the SNR can be severely degraded by a factor of
100 or more when using inverse filtering restoration.

This points out the general ill-conditioned nature of
image restoration, which results from the property that
small perturbations in the degraded image, g(x,»), can
cause large changes in the restored image, f(x,y). For
example, in the noise-free case,

g=h=x*f
f

but when an arbitrarily small amount of noise is added,

m * g = f (assuming no 0/0 ratios), (37)

g=h*f+n
f=m*g=f+n;, (38)

where n; is not necessarily small and can in fact be
quite large.

Inverse filtering, however, does have its advantages.
It is easy to implement and can be done quickly. It re-
quires only knowledge of the system psf, unlike many
other techniques that require knowledge of the noise
and object characteristics. In addition, in high-SNR en-
vironments it gives restorations with good resolution
(providing there are few zeros of H in the image band-
width). To avoid indeterminate ratios, a pseudoinverse
filter cans be defined as'?

Mscu nvers =H =lm —— . 39
Pseudomverse 7—-0|H|2+'y ()

L. E. Franks, Signal Theory, rev. ed., Dowden & Culver,
Stroudsburg, Pa. (1981).
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TP .

Figure 2 shows an original object function. Figure 3
shows the object after it has been blurred by a low-pass
filter and degraded by noise for both a high SNR
(33 dB) and a lower SNR (23 dB). The restoration gener-
ated by inverse filtering is given in Fig. 4 for the high-
and low-SNR cases. As expected, the amplified noise
severely degrades the restoration at low image SNRs.

4.2.2 Wiener Filtering

The poor noise performance of inverse filtering led
to the development of alternate restoration techniques
designed to restore degraded images with lower SNRs.
This approach treats the original object and noise as
statistically uncorrelated random functions and con-
structs a Bayesian estimate of the object. The system
transfer function, H, is initially treated as determinis-
tic and known. This method entails finding the LSI
restoring filter that minimizes the mean squared error
of the resulting estimate. The linear filter that accom-
plishes this is commonly known as the Wiener filter. '

The Wiener filter is derived as follows. The mean
squared estimate error is

Etlf - 7
E{lf —m*g|*},

0

e

(40)

Il

-

Figure 2 Original object function.'?

- . o

AL Papoulis, Probability, Random Variables, and Stochas-
tic Processes, McGraw-Hill, New York (1963).
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Figure 3 Object with Gaussian biur and additive noise
with (a) SNR = 33 dB and (b) SNR = 23 dB."

where E{ - } denotes the ensemble average and m is the
psf of the Wiener restoration filter. The technique re-
quires that we find the function m(x,y), which
minimizes this error. Using the central concept of lin-
ear mean square estimation theory, i.e., the orthogonal-
ity principle, which states that the error in the estimate
must be orthogonal to the data, we obtain

EfUf(x00) = mx,p ) * g(x,0)]

g (v, = “4n

or
R, (Ax,A¥) = m(AvAv) * R, (AvAy) ,  (42)
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Figure 4 Inverse filtering restoration of Fig. 3 with (a)
SNR = 33 dB and (b) SNR = 23 dB."?

where R,, and R, are the cross- and autocorrelation
functions of fwith g and g, respectively. The Fourier
transform of Eq. 42 vields

S, = MS,, . (43)

where S, and S, arc the analogous psd. The MMSE
Wiener restoration filter is

MWiener = ng / Sgg . 44)

We have implicitly made the assumption that the ran-
dom object and noise processes are statistically wide-
sense stationary. This is frequently not true for real ob-
jects, thereby limiting the class of objects for which
Wiener filtering truly results in the MMSE estimate.
However, we proceed by not only assuming that f(x,y)
and n(x,y) are wide-sense stationary, but also constrain
them to be uncorrelated. Then

H* S,

Myirer = g2 | 45
Wiene! |H|2Sf/ + S,,,, ( )

where S,, is the psd of the noise. This may also be
written as the product of a simple inverse filter and a
modifying filter,

M, 1 1
MWicner = — = - 7
H ~HLl+s,/|H*S,

] . (46)

The modifying filter, M,, is dependent on the
stochastic properties of the random object and noise
functions. At frequencies where the noise psd is negligi-
ble, the Wiener filter behaves as an inverse filter. At
frequencies where the noise dominates, the modifying
filter provides a weighting factor that adjusts the value
of M to be appropriately small. The modifying filter
thus supplies a smooth transition between the two noise
extremes. Slepian'’ considers the case where the de-
grading filter, H, is also modeled as a random function,
and finds that the restoring filter is found by replacing
H* and |H|® in Eq. 45 by E{H*} and E{|H|*},
respectively.

The Wiener filter does not exhibit the singularity
problems associated with the inverse filter at the zeros
of the system filter H. In fact, it is the presence of noise
that ensures that the Wiener restoration filter is zero
whenever H is zero.

The restoring fiiter derived in Eq. 46 is the optimum
LSI MMSE filter. However, nonlinear filters may exist
that yield smaller mean squared errors. In general, the
MMSE estimate is given by f = E{f|g}, which may
be a nonlinear function of g. If f and n are jointly
Gaussian and stationary, the MMSE estimate reduces
to a simple linear filtering operation and the true MMSE
estimate is equal to the LSI MMSE estimate.

""D. Slepian, ““Linear Least-Squares Filtering of Distorted Im-
ages.”” J. Opt. Soc. Am. 57, 918-922 (1967).
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Examples of Wiener filtering restoration of the
degraded images in Fig. 3 are shown in Fig. 5. Some
resolution is lost in the high-SNR case; however, sig-
nificant improvement is niade in the low-SNR case (cf.
Fig. 4).

A parameliic version of the MMSE Wiener filter has
also been developed. For a specific application, the user
can weight the psd ratio in the filter demoninator (Eq.

=y

Figure 5 Wiener filtering restoration of Fig. 3 with (a)
SNR = 33 dB and (b) SNR = 23 dB."?

L) a4

L PN T hr. Ot i Pt T P W W O Y
f L] a ~ -n¢ _:' a. s .l.‘.i. l..‘ ki ~ ‘. -' J N . ]

46) to reflect the degree of importance that should be
attached to this stochastic information. This results in
the parametric Wiener filter

1
1 + vS,./|H|*Sy

1
MParamelric Wiener = 7 [ ] , (47)

H

where ¥ = 0. The parameter v is determined subjec-
tively by the user for a particular image.

4.2.3 Geometric Mean Filtering

We have determined that the simple inverse filter can
demonstrate good resolution performance at spatial fre-
quencies where the signal dominates the noise (usually
lower frequencies), but is notoriously poor in high-noise
regions (usually higher frequencies). The Wiener filter
has excellent noise performance but achieves this at the
expense of smoothing the restored image by the modify-
ing filter, M,. This can be seen by examining the
MMSE restored image in the Fourier domain,

FWi"wr = MWiez‘.ch

I

|
X
5
+
2

NM,
M,F + -
H

48)

The restored image is no longer a noisy version of the
ideal object as in inverse filtering restoration, but a
smoothed noisy version of f(x,y).

Many applications require better combined noise and
resolution performance than either method provides in-
dividually. A heuristic technique that atiempts to recon-
cile the trade-off between resolution and noise is geo-
metric mean filtering restoration. The restoration fil-
ter is defined as

— o -
M Geometric mean [M lnverse] [M Parametric Wiener] .

49

The parameters 0 < a < 1 and vy = 0 are user defined
for a particular image. The user’s choice of « thus shifts
the emphasis from Wiener to inverse filtering as « varies
from zero to one.

4.2.4 Constrained Deconvolution

Both Wiener and geometric mean filtering require
knowledge of the stochastic properties of the noise and
the original object. Constrained deconvolution is simi-
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lar to inverse filtering in that it treats the object as an
unknown deterministic function.

This technique minimizes the square of a linear con-
straint on the estimate,

Min {|e(xy) * fxp)|?) (50)
subject to a fixed value for the estimate error,
e=lg—-h*f?=En’). 1)

The sampled constraint function, c(x,y), is frequently
chosen as a second order or higher difference matrix.
The second order difference matrix, for example, is de-
fined as the Kronecker product of a tridiagonal matrix
C, with itself, C = C, x C,. The matrix C; per-
forms the one-dimensional second order differencing
operation [f(x+1) — f(x)] - [f(x) ~ f(x=1)] on
the data and is

[ 2 0|

Minimizing the second order difference will prevent the
resulting estimate from containing wild oscillations. 1213

The method of Lagrange multipliers may be applied
to yield the restoration filter

H&
M ed deconvol T O 1 e
¢ onstratned deconsolution |H| 2 + 'Y'CI 2

Il

Al
H L1 + 4|C|Y1H)* (52)

where C = FT{c} and « is related to the Lagrange mul-
tiplier. The value of  is adjusted so that the fixed er-
ror criterion is satisfied.

Using constrained deconvolution, one can thus choose
an estimate error, E{n?} (perhaps determined a poste-
riori from the degraded image), and generate a restored
image that has the desired properties provided by the
constraint, ¢. The attractiveness of this technique is that

als) 'u.l bt i

R L2
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the restored image will have these properties but they
will be obtained without detailed knowledge of the ob-
ject and noise functions’ stochastic characteristics.

Figure 6 shows the image restoration achieved by each
of the LSI techniques discussed so rar for a defocused
object with additive high-frequency noise.

4.2.5 Homomorphic Deconvolution
Homomorphic image processing for use in a posteri-
ori degradation determination was introduced in Section
3.2. We can proceed with the results of that section to
develop a homomorphic restoration ﬁlter This tech-
nique is the work of Stockham et al.!" and Cannon,'®

Figure 6 Restoration by various technigues; (a) origi-
nal object, (b) original with defocus and high-frequency
noise, {c) inverse filtering restoration, (d) Wiener filter-
mg restoration, (e) geometric mean filtering restoration
a = Y2,y = 1, (f) constrained deconvoluhon restora-
tion using C = second difference.’

M. Cannon, ‘“Blind Deconvolution of Spatially Invariant
Blurs with Phase,”’ JEEE Trans. Acoust. Speech Signal Pro-
cess. 24, 58-63 (1976).
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and is also known as blind deconvolution. It is unique
among the restoration techniques discussed so far be-
cause it does not assume that the system degradation
filter H is known.

As in Section 3.2, we subdivide the degraded image
into N regions and Fourier transform each region. The
psd of the blurred image is estimated by {ergodic as-
sumption)

1

N
Se = - YIG;|? 53
w = 5 gl | (53)
The image estimate in the Fourier domain is
F = MG, (54)

where M is the homomorphic restoration filter yet to
be determined. The psd of the estimate is therefore

Sy = IM{* (55)

The restoration criterion (see Table 2) for this tech-
nique is to equate the original object and estimate im-
age psd, i.e.,

Sip = Sy
or
IM*S, = Sy, (56)
which yields
!‘MH&)momorphlc deconvolution | = [Sff /Sgg] " (57)

Here, S/, is assumed known or may be estimated from
an undegraded image with structure similar to that of
the original object.

The homomorphic restoration filter derived is the
reciprocal of the degrading filter estimated by Eq. 20.
However, it is not a simple inverse filter as the follow-
ing argument illustrates. If the object and noise are wide-
sense stationary and uncorrelated random processes, we
know

= |H|* Sy + S, (58)

o
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where the noise is assumed to be additive with psd S,,,

Then,
] 123

which is the magnitude of the geometric mean filter with
=1/2and vy = 1,

Sy

O N
IM| HI"S, + S, (59

lM Homomorphic deconvolution l =

(60)

lMGcometric mean, a = 172, y = { l .

Thus the magnitude of the homomorphic filter is the
magnitude of the geometric mean of the inverse filter
and the Wiener filter for wide-sense stationary and un-
correlated object and noise. This exciting result is ob-
tained without knowledge of the noise psd or the degra-
dation filter H. The only information required is an es-
timate of the object psd (S) and the degraded image
itself. However, this technique yields only the magni-
tude of the restoring filter. Unless the degrading filter
is known to contain no zero crossings (e.g., Gaussian
blur), additional methods such as those described in Sec-
tion 3.2 must be used to estimate the restoration filter
phase. Figure 7 shows the effectiveness of this technique
on the blurred images in Fig. 3.

4.2.6 Recursive Filtering

Recursive filtering is a specialized restoration tech-
nique that assumes that the original object is corrupt-
ed only by additive white noise. The degradation psf
of the imaging system reduces to A(x,y) = é(x,y), a
two-dimemsional dirac function, for this technique and

g(xy) = fxy) + n(xy) . 61
The object f(x,y) is modeled as a two-dimensional
wide-sense Markov process. Recall that for a one-dimen-
sional Nth order Markov process, the value of the func-
tion at a given sample location is dependent only on
the values of the preceding N samples. A two-dimen-
sional (N, M)th order Markov process stipulates that the
sample value at a given Jocation is dependent on the
values of the preceding N by M block of samples,

Prifi(x+ 1, y+ 1) |f(j foralli<x, j=<y)
=Prifix+1,y+ 1)]|f(ij for
x~-N<i=sxy-M<j<y}. (62
:~ v \,:'o‘.:'.?:'c?t\.:h.t‘n !\’?‘!‘». ,. . - h" NG
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The coefficients {a;} are found by minimizing the
mean squared error for the estimate f(x,y) and are

a; = py (643)
a = py (64b)
a] = pxpy + 04 (64(:)

0,C(1,0) + p,C(0,1) — p,p,C(0,0)
aul = ? 3 4 » (64d)
C(0,0) + o,

where C is the object and estimate cross covariance,

C(Ax, Ay) = E{[f(xy) — f(x»)]

Fix + Ax, y + Ay) - f(x + Ax, y + Ay)]} ,(65)

and o} is the variance of the white noise.

For Eq. 64, the autocorrelation function of the ob-
ject is postulated to be spatially separable and equal to

Ry (&x, Ay) = p,/¥ p, ™1 (66)

Recursive filtering is substantially different from the
other LSI restoration techniques previously described
because it operates in the spatial and not the Fourier
domain. Since the point spread matrix of the filter is
of limited non-zero extent (four-element array for a first
order Markov process), the spatial convolution can be
implemented quickly on the computer. A distinct disad-
vantage of this approach is that the adjacent sample
correlations must be assumed constant throughout the
entire image to yield a spatially invariant restoration fil-
ter. This is clearly not realistic for most images, which
Figure 7 Homomorphic deconvolution restoration of may contain, for example, regions of essentially constant
Fig. 3 with {a) SNR = 33 dB and (b) SNR = 23 dB." background (o, = p, = 1) in addition to regions of

. ‘:;-. Y
WS,
e e T =

| Suliaias
H

o

]
L

‘ .:: rapid!y Yaryit}g intensit_ies (00, << 1). _ ‘
® In image restoration applications, this technique is This gives rise to the development of the spatially vari-
e frequently used assuming that the original object is a ant restoration technique of regional recursive filtering.
NN simple two-dimensional first order Markov process. The Each regional filter may be applied to areas of the im-
;'_"\ linear estimate of f(x+1, v+1) has been found to age that have similar spatial correlation properties. Seg-
NN be'’ mentation of the image into these regions and the de-
N termination of the individual recursive filters clearly add
-~ flx + Ly + 1) = a, flx + 1,y) + a.ftx,y + 1) to the complexity of the technique. Regional recursive

filtering also creates artifacts at the region boundaries
+oafx) + ag(xy) . (63) that must be smoothed by additional processing.
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{ E 4.3 LINEAR SPATIALLY VARIANT
e TECHNIQUES

: X Section 4.2 outlined those restoration techniques ap-
,.j- plicable to LSI systems. Because the imaging system was

"L modeled as spatially invariant, the powerful theory of

‘l Fourier domain analysis could be used. However, real
» imaging systems are seldom spatially invariant and are
-‘:-: more appropriately modeled as

o~ e = || A,

, . X f(x,,¥,) dx, dy,

»

b + n(x,y,) ., (67)
o S |
h i‘: where the system psf is a function of both the object

( and image coordinates.

[ The simple solutions afforded previously by Fourier
‘. ,\\."‘ analysis technigues no longer apply because of the spa-
4R tial variance of the system psf. Restoration techniques

. - for LSV systems are, therefore, fewer in number and

- more ditficult to implement.

ﬁ 4.3.1 Isoplanatic Patches

y The simplest approach to LSV restoration is to di-

. - vide the blurred image into regions or isoplanatic
TR patches. In each isoplanatic patch the spatially invari-
<+ ant assumption is approximately valid so that we may
' model the svstem as piecewise LSI,

g,(x.5,) = \ ~h, (v, =X, % —x)
SR x flx,.v.,) dx, dy, , (68)

. - . . .

I, for (x,,v.) in the jrh isoplanatic patch. Any of the
‘YN reviously derived spatially invariant restoration tech-
. n p. . . . .

N niques can then be applied to the individual patches.

> ., As with regional recursive filtering, postprocessing is

S e usually required to reduce artifacts generated at the re-

. stored image isoplanatic region boundaries.

L . 4.3.2 Coordinate Distortion Method

A A novel approach to spatially variant image restora-
- tion developed by Sawchuk ~ and Robbins and Huang®

.o hinges on finding a nonlinear coordinate transformation
.o~ that maps the imaging system to a linear spatially in-
! variant domain. An LSI technique can then be used to
. restore the image in this new domain, and an inverse

o 25
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coordinate transformation of the result yields the re-
stored image in the original coordinate system.

The application of this approach is limited to those
LSV systems that are decomposable into the general
form shown in Fig. 8. However, the effects of many
forms of spatially variant image degradation can be de-
scribed by this decomposition. The applicability of this
coordinate distortion technique for restoring images de-
graded by certain types of camera motion'*? and by
the ogptical aberrations of astigmatism and curvature of
field® has also been shown.

For example, a simple rotation of the camera about
the optical axis yields the LSV result

ds, 69

f(x() ’)’0)
g(x,y,) =

_!?,r
w\A’?, + ¥V,
2 2 2 2

along x;, + y, = xi + yi .

The limits of integration are from

X, =X X, = x, cos wl + y, sin wT
to
Y, =¥, Yo = x, sin wT + », cos T .
Here,
w = constant angular rotational velocity,
T = time of photographic exposure,
ds, = differential path element,

and «7 is constrained to be less than 2x radians (over-
all camera motion must be less than one full rotation).

The imaging system is otherwise considered to be per-
fect, and no noise is introduced for this simple exam-
ple. By transforming to polar coordinates (r, 8), we ob-
tain

S"nz”l‘wT _/l",,,a,, )

B =8, w

S() f(rn'ol - 0)

g(r,8,) df,

~ e

A= -1 w

= S S(r,, 6, = 8) h(6) d6 . (70)

“A. A. Sawchuk, “*Space-Variant lmage Motion Degradation
and Restoration,” Proc. JEEE 60, 854-861 (1972).
A. A. Sawchuk, *‘Space-Variant System Analysis of Image
Motion,”" I. Opt. Soc. Am. 63, 1052-1063, (1973).
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fixp,, ¥o! Spatially variant pst | 9ix; v}
—_— | e
hy(xol Yo X y,)

I'-LSI system 1

| |

}

Coordinate distortion | 5 Spatially I Inverse coordinate distortion
fixo. Yo! u, v) | ) glu, v) | gix;. vj)

u = bylxg, yol +- invariant psf + x;j = cylu, v)
v = bylxg, vl | hylu, v) | vi = calu, v)

i |

L - — J

Figure 8 LSV coordinate distortion restoration.

where #(0) = (1) for —wT < 8 < 0. The system is
spatially invariant with respect to the new coordinate
domain. An LSI technique can now be used to restore
the image before transforming back to Cartesian coor-
dinates. Figure Y shows the usefulness of this technique
for an image blurred by camera rotation. The L.SI tech-

‘
‘
i ——
L

Figure 9 Coordinate distortion restoration of rotation-

al blur; (a) rotationally blurred object. (b) blurred object
transtormed to pclar coordinates, {c) LS! resioration
of transformed object, (d) restored image transformed
back to Cartesian coordinates.'?

26

nique used to develop the restored image in Fig. 9¢ was
a simple inverse filter.

The drawbacks of this technique stem from: a) being
able to define the coordinate transformation for a given
LSI image restoration application; and b) determining
the object and noise stochastic properties in the new
coordinate system. The laiter point is relevant when LSI
estimation is used to restore the degraded image. For
example, we cannot expect that minimizing the mean
squared estimate error in the transformed domain will
necessarily minimize the mean squared error in the origi-
nal coordinate system. However, for specific applica-
tions (e.g., camera motion and aberration correction),
this technique may be quite useful.

4.3.3 Maximum A Posteriori Restoration
Maximum a posteriori (MAP) restoration is a non-
linear iterative technigue that, in its most general form,
is applicable to spatially variant imaging systems. We
describe the technique for a discrete imaging system
where the sampled image, object, and noise data are
lexicographically ordered into one-dimensional vectors,

g=I(Hf+nm, an

and H is a two-dimensional matrix representing the ef-
fects of the spatially variant system psf.
The MAP estimate of the vector f is given by

Max (Priflg)) | : (72)

f=fyap

Bayes's rule states

Prig|f} Prif
Prifig] = *il‘*fol , (73)
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which is the expression we need to maximize with re-
spect to f. [f the original object and noise can be mod-
eled as multivariate Gaussian processes, i.e.,

can be placed on the object, it is possible (in theory,
at least) to determine the object spectrum outside of
the system bandwidth. The restored image would then
achieve the property of spatial superresolution—reso-
lution beyond the limit imposed by the system cutoff

n__|

“.ce
LY

¢

s

Prif} = A, exp{—%(f—f‘ﬁc/r‘ f - f‘)}

frequency. Two techniques that have this property are

(74) maximum entropy restoration®* and the method of
analytic continuation.? Unfortunately, both tech-
1 _ niques require extremely high SNRs to achieve super-
Prin} = A, exp{—inT[C,,] ! n} , (5 resolution. pe

where [C/] and {C,] are the object and noise covari-
ance matrices, the MAP estimate is found by iteratively
solving

fuse = f + [CAHTIC,1 7' [8 — H fyap] (76)

for fyap . Although the multivariate Gaussian assump-
tion may seem overly restrictive at first, it gives a rea-
sonable model for many images. The underlying struc-
ture of the object can be modeled in the mean vector
f, with the finer structure described by Gaussian varia-
tions about this mean vector. This may be a more realis-
tic model than that obtained by assuming a wide-sense
stationary object. Recall that the stationarity assump-
tion requires that every element in the mean vector f
be equal to the same constant value (as in Wiener, ge-
ometric mean, and recursive filtering).

The MAP restoration technique requires a great deal
of prior knowledge as Eq. 76 demonstrates. The object
and noise stochastic properties, as well as the imaging
system degradation effects, must be specified. The iter-
ative nature of this technique also makes it computa-
tionally expensive and convergence is not always guaran-
teed. However, MAP restoration has been used success-
fully in certain applications?' and can be extended to
nonlinear spatially variant imaging systems as well.

4.3.4 Superresolution Techniques

The limit of attainable image resolution using the defi-
nition derived from the Rayleigh criterion® is deter-
mined by the cutoff spatial frequency of the imaging
system. Even with the best possible restoration tech-
nique, object information outside of the system band-
width is lost; we would expect a minimum resoivable
spatial element corresponding to the inverse of the sys-
tem cutoff frequency. However, if certain conditions

“'B. R. Hunt, “‘Digital Image Processing,”” Proc. IEEE 63,
693-708 (1975).

Maximum entropy restoration is based on modeling
the original object vector f (suitably normalized) as a
probability density function (pdf). This condition guar-
antees positive values for the restored image vector f.
A derivation based on multinomial pdf (e.g., see Refs.
4 and 5) yields

= exp{ -1 — 2A\[H"*]T

(g - H f“Max cmropy)] ’ an

fMa\x entropy

where the additional constraint g — H fi? = Inll?
has been incorporated using the method of Lagrange
multipliers. Maximum entropy, like MAP restoration,
is a nonlinear iterative technique. The estimate derived
is intrinsically not band limited and thus superresolu-
tion results in high-SNR cases.

The method of analytic continuation is based on an
eigenfunction expansion of the spatially limited object
whose Fourier spectrum is known conly in the system
bandwidth. Prolate spheroidal wave functions have the
interesting properties of being a) orthonormal on the
real line and b) a complete orthogonal basis for the set
of functions band limited to a specified bandwidth. If
the imaging system is modeled as a spatially separable
system defined by a rectangular aperture, the dual char-
acteristics of the prolate spheroidal wave functions
(pswf) lead to a non-band-limited estimate for the origi-
nal object (see Refs. 22 and 23 for details). However,
image SNRs on the order of 30 dB or more are required
for analytic continuation to result in useful restoration.
In addition, the pswf and the resulting image estimate
are difficult to compute, which further limits the use-
fulness of this technique.

2¢. K. Rushforth and R. W. Harris, ‘‘Restoration, Resolu-
tion, and Noise,”” J. Opt. Soc. Am. 58, 539-545 (1968).

3C. L. Rino, “Bandlimited Image Restoration by Linear
Mean-Square Estimation,’” J. Opt. Soc. Am. §9, 547-553
(1969).
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5.0 COMPARISON OF RESTORATION TECHNIQUES

The restoration techniques discussed in Sections 4.2
and 4.3 are summarized in Table 3. As the second
column of the table demonstrates, the LSI restoration
filters appear to be strikingly similar. We have seen that
these filters can even be equivalent under certain con-
ditions; homomorphic deconvolution is equivalent to
geometric mean filtering if the object and noise are un-
correlated and wide-sense stationary. Also, consirained
deconvolution is equivalent to parametric Wiener filter-
ing if the constraint is chosen such that C = §,,,/S,,.
Even nonlinear maximum entropy restoration can be
related to a simpler LSI technique. If a linear approxi-
mation to the exponential in Eq. 77 is made and []
is assumed LSI, discrete pseudoinverse filtering resto-
ration results. '

Given the similarities between the restoration filters,
how does a user choose one technique over another for
a particular application? There are important factors
thart differentiate the image restoration techniques and
act as guidelines for application, including the following:

1. The restored image quality or perceptibility to a
human observer is an important performance fac-
tor that depends on the restoration technique used.

2. The noise performance of a given technique is a
function of the overall image SNR as well as the
type and severity of the image degradation.

3. Each technique requires certain a priori knowl-
edge and imposes restrictive assumptions on the
imaging system model which limit its application.

4. The feasibility of using a restoration technique for
a specific application is often determined by the
length of time required to implement the al-
gorithm.

Most of these factors are delincated in Table 3. One
other factor that influences the performance of the resto-
ration technique is the nature of the system noise. The
noise type, auto- and crosscorrelation properties, and
action on the system (additive, multiplicative) will also
effect the performance. This effect is difficult to char-
acteriv * other than by statirg that we would, of course,
expect reduced restoration performance for techniques
with restrictive system assumptions that do not fit the
applicat, n.

A quick (albeit coarse) comparison of the most com-
monly used restoration techniques for the four perfor-
mance criteria defined above is given in Table 4.

TN Cannon, H. . Trussell, and B. R. Hunt, “Compar-
ison of Image Restoration Methods,” Appl. Opt. 17,
23%4 3390 (1978),
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That the visual quality of the MAP, homomorphic, and
geometric mean filters is, in general, better than Wien-
er filtering may be surprising at first, since Wiener filter-
ing supplies the MMSE estimate. F.owever, Wiener
filtering yields the MMSE estimate for wide-sense sta-
tionary object and noise functions. This assumption is
seldom true for real images. Also, the Wiener filter
trades improved noise performance for reduced image
resolution. As studies of the human visual system have
shown,® human observers are usually willing to accept
some additional image noise in order to gain improved
resolution.

The noise performance of the techniques shows that
inverse filtering, as expected, provides unsatisfactory
restoration in low-SNR environments. This technique
is especially sensitive to high-frequency noise. The other
restoration filters listed in Table 4 work well in noisy
environments. As the SNR increases, however, the resto-
ration achieved by any of the techniques converges to
that of simple inverse filtering.

The degree of information necessary for each tech-
nique varies widely for the restoration methods listed.
Homomorphic deconvolution requires the least amount
of a priori knowledge while Wiener, geometric mean,
and MAP filtering require detailed information about
the imaging degradation and stochastic properties of
the object and noise. The degree of information need-
ed for inverse filtering and constrained deconvolution
falls between these two extremes.

Often, the most important factor in choosing a resto-
ration technique is its computational complexity. If large
amounts of image data need to be processed quickly
and cost effectively, it would be implausible to use an
iterative algorithm (without guaranteed convergence) like
MAP restoration. Ever. :he partitioning required to
compute and apply the homomorphic filter may take
too much time for such an application. Inverse, Wiener,
geometric mean, and constrained deconvolution filter-
ing have moderately fast implementations using two-
dimensional fast Fourier transform (FFT) algorithms.
Wiener filtering has an additional advantage; the resto-
ration filtering can be performed in any unitary trans-
form domain. Fourier, Hadamard, identity, or Karhun-
en-Loeve transform processing is chosen depending on
which technique yields the fastest implementation for

“*T. G. Stockham, Ir., “Image Processing in the Context of
a Visual Model,”" Proc. /EEE 60, 828-842 (1972).
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Table 3

Summary of image restoration techniques.

Restoring filter

Restoration Restoring Restoration A priori knowledge Performance Disadvaniages
technique filter criterion and assumptions advanlages variations
1 ) . . .
Inverse filtering M = - Minlg - A+A° LSl system Computational Amplifies high- Pseudoinverse
H H known simplicity frequency noise M=H'm
Indeterminate when He
H=0 lim ———-l]
y=0ly + |H|
i S 1 . . . . . I
Wiener filtering M= ll T ] Min EL/ - /171 LS system Optimum linear MSE Stationary f assumption Parametric Wiener
H iHSy H, S,.. Sy known estimate unrealistic M= 1
n, f stationary Good noise performance Restored image is “H
M=0whenH =0  smoothed o

N Son
Geometnie mean M= l| vy e
filtering H HI"S,
] 4 O
Constrained M= - N
H H-

decomvolunion

Homomorphic Moo=
deconvolution

Recursive -
fittesing

Isoplanatic patch
filtering

Any LS filter

C vordinate
dintortion method

Any LSI filter

MAP- restoranon —

Maxtmum -
entropy

Analvtic’
contintuation

] User defined

Min |cs fi?
subject 1o

g - hsf1?

= d
Sy = Sw

Min ELif - A7)
Max Priifig)
Max | fin )
Min Lo £

For detals regarding this technigue, see Section 426

See Section 4 33
Ser Section 4 14

LS! system
H. S,,, S, known
n f stationary

1.SE system
H, o} known
C user defined

LSI systein

Sy known

Extent of H < area of
partition block
Ergodic g

1deal LS| imaging system
White additive noise

Sxp) is (N, M)th order
wide-sense Markov

R, and C, known

LSV system is piecewise
LSI plus LSI technique
assumptions

LSV system described as
LSI after known
coordinate fransforma-
tion plus LSI technique
assumptions

LSV system

/ and g multivaniate
Gaussian processes
[H. £, (€, [C.

known

LSY system
f, [ non-negative
{M. o) known

1SV system

f analytic and band-
lsmited 1o square band
region

Prolate spherowdal wave
functions known
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Combines good low-

[+ ]
Yinsy,

Stationary f assumption  True geometric mean,

of inverse filtering with
high-frequency noise
performance of Wiener
filtering

User tailored for each
image

User-defined constraint
generates desired
restoration without
knowledge of S, S,,

No knowledge of H
required
Good noise performance

a=Y%y=1

Iterative and subjective  [nverse filter, o = |
method to find param- Parametric Wiener,
eters v, « a=0

Iterative method to
find y

Restoration more noise
sensitive than Wiener
filtering

Finite second degree
difference matrix
letig)

Human visual response
model {c(is}}

Magnitnd —

ly restora- Eq to ic
tion filter requires mean with a = Y%,
additional processing to 4 = 1 for stationary f,
determine filter phase n

Computationally complex

Quick filter Restrictive and unrealistic LSV regional recursive
imph it i filtering
Straightforward Computationally —
y ion expensi

Fast LSV restoration
achieved when
coordinate transforma-
tion known

Visually pleasing
restoration

Visually pleasing
restoration
Superresolution

Superresolution

Only works for certain —
decomposable LSV
systems (Fig. 8)

frerative technique -
Convergence not
guaranteed

herative techmque
Convergence not
guaranteed

Very susceptible to noise

Computationally -
expensive

Requires very high SNR

(> 30 dB)
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Table 4
Comparison of restoration technigues.

Visual quality Noise Degreer of required Computatibhaf
(moderate SNR) performance  a priori knowledge complexity

Inverse filtering Fair Poor Low Low
Wiener filtering Good Good High Moderate
Geometric mean .

filtering Very good Good High Moderate
Constrained .

deconvolution Good Fair Moderate Moderate
Homomorphic .

deconvolution Very good Good Low High
MAP restoration Very good Good High

the particular image. * (See Ref. 12 for restoration al-
gorithms and additional insight on their implementa-
tion.)

Ultimately, the choice of restoration technique is de-
termined by the particulars of the application, What
kind of visual quality is required? A restored image that
will be subsequently processed by additional software
for classification/detection purposes will not necessar-
ily require the same degree of visual quality as one that
will be presented to a human observer. What is the sys-
tem SNR and how severe is the degradation? If the sys-
tem consistently operates at high SNRs, simple inverse
filtering may suffice. What kind of prior knowledge is
available? If little information about the system is
known or estimable, homomorphic deconvolution may
be the most attractive technique. However, the user must
remember the assumptions couched in this method: the
non-zero extent of H is less than the partition size and
H is real and non-negative.

Very high

And finally, what are the computational considera-
tions for the particular application” Are there reels of
data or a single image to restore? Is the data stored and
processed in an image processing laboratory or must
restoration be accomplished in close to real time? For
very fast restoration applications, the format of the im-
age data can further influence the choice of restoring
technique. For example, video image data received one
scan line at a time lends itself to techniques that can
be implemented by one-dimensional line processing.
Even though faster two-dimensional FFT algorithms ex-
ist that operate on a two-dimensional extension of the
one-dimensional Cooley-Tukey butterfly operation,?’
most two-dimensional FFT algorithms are performed
by sequential one-dimensional FFT computations. This
makes techniques such as inverse, Weiner, geometric
mean, and constrained deconvolution filtering especially
applicable to scanned imagery.

7D. B. Harris, J. H. McClellan, D. S. K. Chan, and H. W.
Schuessler, ‘‘Vector Radix Fast Fourier Transform,” 1IEEE

“W. K. Pratt, **Generalized Wiener Filtering Computation
Techniques,”’ IEEE Trans. Comp. C-21, 636-641 (1972).

Conf. on Acoustics, Speech, and Signal Processing, Hart-
ford, Conn. (May 9-11, 1977).
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6.0 CONCLUSIONS

Although the techniques discussed above represent
those most frequently used, they are only a subset of
the image restoration techniques that have been devel-
oped. Some additional methods are maximum likeli-
hood, maximum weighted Burg entropy, and even mini-
mum entropy." Frieden?® unifies Bayesian estimate
methods under a general theory of maximum physical
likelihood (note, however, that Frieden’s definition of
maximum likelihocd differs from convention). Several
nonlinear and linear recursive restoration techniques are
studied in another publication by Meinel.?

With the exception of maximum entropy and MAP
restoration, the techniques in Section 4.0 do not guar-
antee non-negative values for the restored image, f. If
the optical intensity of the object is measured by the
function f (i.e., f = 0), we would prefer that the re-
stored image be non-negative also (f = 0). This can be
done by adding a positivity constraint to any restora-

“B. R. Frieden, *‘Unified Theory for Estimating Frequency-
of-Occurrence Laws and Optical Objects,”’ J. Opt. Soc. Am.
73, 927-938, (1983).

“'E. S. Meinel, ““Origins of Linear and Nonlinear Recursive
Restoration Algorithms,” J. Opt. Soc. Am. 3, 787-799
(1986).
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tion criterion. Unfortunately, this usually does not lead
to a closed form expression for the restored image and
requires computationally intensive nonlinear program-
ming to obtain a solution.

New image restoration techniques can be developed
simply by defining new restoration criteria. Most current
techniques are based on criteria that generate visually
pleasing restorations. However, if the restored image
is subsequently processed by additional software rather
than presented to a human observer, it may be possible
to develop new techniques that optimize the perfor-
mance of this postrestoration processing. One applica-
tion where this may prove profitable is in the area of
automatic scene detection and classification. Potentially,
one could develop a restoration technique based on a
criterion that would be tailored to give maximum prob-
ability of detection and correct classification of the resul-
tant restored image scenes.
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